Neural Network Simulator

Ted Hung

December 12, 2001

The creation of a neural network construction and simulation kit involves many different issues.  The programs currently available were developed for research, teaching, and commercial purposes.  In addition, they attempt to provide a maximal amount of flexibility.  This added flexibility leads to added complexity in the programs.  A major issue in the design of these programs is how to provide maximal flexibility while maintaining minimal complexity.  The importance of this issue becomes apparent when building very large neural networks.  Simplicity in constructing neural networks is important for teaching about neural networks as well as for conducting research on neural networks.  For teaching, a simpler tool will encourage the student to experiment more with various network configurations.  For research, a simpler tool will facilitate the testing and confirmation of hypotheses concerning neural network configurations.  Various approaches to the problem of simplicity in neural network construction have been attempted.  Among these approaches are the use of a simplified programming language, the modification of numerous parameter fields, the manipulation of arrays and vectors, and the graphical layout of axons and neurons.  Each method has associated advantages and disadvantages towards neural network layout and construction.  The program that I have created allows for a new method of neural network construction that takes advantage of graphical layout while still allowing for the construction of powerful neural networks.

The first feature of this program is the ability to graphically layout neurons and axons using the mouse.  Neurons are placed by simple mouse clicks and connections between neurons are created by dragging a connection from the source to the destination neuron.  The simplicity of this method over previous methods is very apparent.  While other programs require careful analysis of a matrix or the manipulation of a pseudo-programming language, this method relies entirely on the mouse.  The abilities to experiment with this type of system are endless.  Furthermore, neurons can be moved around the workspace by right button dragging of the neurons around the workspace.  A neuron can be deleted by right clicking on it and selecting the delete option from the associated drop down menu.

More power is placed in the system via the ability to record 

[image: image7.png][eowostns 3]




 and stimulate  the created neural network.  Nodes that can stimulate are called stimulators, and nodes that can record are called recorders.  These stimulators and recorders can be just as easily placed as the neurons could be placed.  By simply clicking with the left mouse button in the appropriate location, the stimulator or recorder is placed in the layout.  Connections can be created out of stimulators using the same dragging technique as the one used in the creation of connections with neurons.  Connections can be created into recorders using the same dragging technique as the one used in the creation of connections with neurons.  Thus, the similarity of actions is preserved between different nodes types.  This consistency is a major advantage and decreases the learning curve dramatically.  Furthermore, the program makes sure to restrict connections from being made into stimulators and out of recorders.  Stimulators and recorders can be moved around the workspace by right button dragging them around the workspace.  A stimulator or recorder can be deleted by right clicking on it and selecting the delete option from the associated drop down menu. 

Various parameters of the connections and the neurons can also be changed easily.  By right clicking on neurons, their properties dialog box can be brought up.  From this property dialog box, four tabs allow for the manipulation of four properties: Neuron Properties, Summation Properties, Axon Properties, and Modifier Properties.  Neuron Properties are those that are associated directly with the neuron.   Thus, from the Neuron tab, the threshold, refractory [image: image1.png]


period, and activation function can be modified.  The threshold and refractory period are only valid when the activation function is set for all or nothing.  In this instance, the neuron will fire given that it has not fired within the refractory period and the summation of its incoming activations is over the threshold.  The activation function can also be set to y=x and the sigmoid function.  Both of these are continuous activation functions as opposed to the all or nothing model.  Thus, they map a particular input value(x) to a particular output value(y).  Under the tab for Summation Properties, a summation function can be entered for the specific neuron.  The input neurons are labeled C1,…,CN.  To write a summation function, the labels of the input neurons are used to specify the resulting activation from their axons.  Thus, the summation can represent a multiplication of two inputs (Hebbian), a division of two inputs, or a simple addition of them.  This summation equation can involve any combination of +, -, *, or /. Properties of axons are modified via the Axons tab from the source neuron.  From this tab, specific connections can be selected and their associated weights can be easily changed.  The selected connection is displayed in bold on the workspace.

In order to allow for learning rules, the concept of a modifying axon or “maxon” had to be defined.  Several requirements were needed for learning rules: modification had to be based upon activation, modification had to affect the weights of specific axons.  As a result, learning is represented in this neural network simulator by “maxons”.  Maxons are basically axons that modify the axons of the destination neuron based upon activation from the source neuron.  As a result of this ability, maxons satisfy the two requirements needed for the implementation of learning rules.  Maxons can be created by switching the connection mode on the toolbar of the workspace from normal to modifier mode.  Once this is done, then it is a simple process to drag a maxon from one neuron to another neuron.  To define the modification parameters of a maxon, the user simply needs to access the properties of a neuron and select the Modifier tab.  From there [image: image6.png]Thieshhold

Refractor Perod

Activation Function

Newon | Surmaion | Asons | Modiers




the specific modifier should be chosen and the “Modify Properties” button should be pressed.  This in turn pops up a new dialog box that gives a list of modifiable axons and the factor by which to modify the axons when the maxon is activated.  This factor is multiplied by the activation of the maxon and then added to the current weight of the target axon. 

As a result of the power and ease of use of this neural network simulator, I was able to implement the Delta rule as a learning rule.  This rule is integral to the implementation of backpropagation in a neural network.  The following shows the neural network corresponding to the Delta rule:

[image: image3.png]- Untitled - NetSim [-[ofx]
Fie Edt View Help

EEEEEE RO NS

Ready





The resulting error output over time, when the predicted output is 1 and the expected input is 2, is shown in the graph below:

[image: image4.png]savets





The resulting predicted output is given in the graph below:

[image: image5.png]savets





So clearly, the neural network above converges on the correct answer over several trials.

As a result of this neural network simulator, it is clear that a more graphical construction of neural networks is beneficial.  Students will find their understanding of neural networks increased by this program, and researchers can use this program to better understand what is going on in neural networks.  This neural network simulator has definitely made many of the tasks associated with neural network construction simpler and easier to accomplish.

PAGE  
5

_1069643057

_1069643115

